

Formelkatalog zur ÖNORM A 2063:2015-07-15

"Austausch von Leistungsbeschreibungs-, Elementkatalogs-, Ausschreibungs-, Angebots-, Auftrags- und Abrechnungsdaten in elektronischer Form"

des Komitees 015 "Vergabe- und Verdingungswesen"

1

ÖNORM A 2063:2015

A.6 Formeln

		Ein	gabea		ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Summierung einzelner Werte Summe von max. 4 Werten	1				(X ₄)		$W = X_1 + X_2 + X_3 + X_4$
Produktbildung Produkt von max. 4 Werten	2	±X ₁	± X ₂	(± X ₃)	(± ×4)	*	$W = X_1 \cdot X_2 \cdot X_3 \cdot X_4$
Produktbildung Produkt von 2 Summen	3	X ₁	(X ₂)	X ₃	(×4)	*	$W = (X_1 + X_2) \cdot (X_3 + X_4)$
Quotientenbildung Quotient von 2 Produkten Bedingungen: $X_3 \neq 0$ $X_4 \neq 0$	4	±X₁	(± X ₂)	± X ₃	(± X ₄)	*	$W = \frac{X_1 \cdot X_2}{X_3 \cdot X_4}$
Seiten eines rechtwinkeligen Dreiecks							
Länge der Hypothenuse Länge der Kathete	5		a [a]	[b]	С	*	$W = \sqrt{a^2 + b^2}$ $W = \sqrt{c^2 - a^2} \text{ oder}$ $W = \sqrt{c^2 - b^2}$

		Eing	gabea	nweis	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Rechteck	10		±a	±b		*	A = a · b
Prisma	11	±Η	±a	±b		*	V = H · A A siehe Formel 10
Pyramide	12	±Η	±a	±b		*	$V = \frac{1}{3} \cdot H \cdot A$ A siehe Formel 10
Pyramidenstumpf b ₂ * † * * * * * * * * * * * * * * * * *	13	±H	a [a ₂]	b [b ₂]		*	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{a^2 + a \cdot a_2 + a_2^2}{a^2}$ oder $V = \frac{1}{3} \cdot H \cdot A \cdot \frac{b^2 + b \cdot b_2 + b_2^2}{b^2}$ A siehe Formel 10

		Eing	gabea	nweis	ung		
Geometrische Figur	FO			Wert		_	Formel, Berechnung
Keil	14	±H	2 a	3 ±b	4	5	$V = \frac{1}{6} \cdot H \cdot (2 \cdot a + a_2) \cdot b$
$\frac{a_2}{a}$			a ₂				6
Keilstumpf (Ponton)	15	±Η	a a ₂	b b ₂		*	$V = \frac{1}{6} \cdot H \cdot [(2 \cdot a + a_2) \cdot b + (2 \cdot a_2 + a) \cdot b_2]$
* a **							
						,	

		Eing	gabea		ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Trapez	20		a	С	±h	*	$A = \frac{1}{2} \cdot (a+c) \cdot h$
aus a, c, h							Hinweis: Formeln 21 bis 27 siehe nach Formel 30
Trapez aus a, b, c, d Bedingung: a ≠ c	30		а	b	С	d	$A = \frac{1}{2} \cdot (a+c) \cdot X$ (Heronsche Flächenformel) Hilfswerte: $s = \frac{a-c+b+d}{2}$ $X = \frac{2 \cdot \sqrt{s \cdot (s-a+c) \cdot (s-b) \cdot (s-d)}}{a-c}$ Hinweis: $a > c \text{ergibt} A > 0$ $a < c \text{ergibt} A < 0$
Prisma							V = H·A
Grundfläche aus a, c, h	21	±Η	а	С	±h	*	A siehe Formel 20
Grundfläche aus a, b, c, d	31	±Η	а	b	С	d	A siehe Formel 30
Pyramide							$V = \frac{1}{3} \cdot H \cdot A$
Grundfläche aus a, c, h	22	±Η	а	С	±h	*	A siehe Formel 20
Grundfläche aus a, b, c, d	32	±Η	а	b	С	d	A siehe Formel 30

		Eing	jabea	nweis	ung		
Geometrische Figur	FO	. 1		Wert			Formel, Berechnung
Pyramidenstumpf		1	2	3	4	5	
$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$							
Grundfläche aus a, c, h	23	±Η	a [a₂]	C [C ₂]	h [h ₂]	*	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{a^2 + a \cdot a_2 + a_2^2}{a^2} \text{oder}$ $V = \frac{1}{3} \cdot H \cdot A \cdot \frac{c^2 + c \cdot c_2 + c_2^2}{c^2} \text{oder}$
							$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{h^2 + h \cdot h_2 + h_2^2}{h^2}$ A siehe Formel 20
Countities have a band	00		_		_		
Grundfläche aus a, b, c, d	33	±Η	a [a ₂]	b [b ₂]	C [C ₂]	a [d₂]	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{a^2 + a \cdot a_2 + a_2^2}{a^2} \text{oder}$ $V = \frac{1}{3} \cdot H \cdot A \cdot \frac{b^2 + b \cdot b_2 + b_2^2}{b^2} \text{oder}$
							$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{c^2 + c \cdot c_2 + c_2^2}{c^2} \text{oder}$ $V = \frac{1}{3} \cdot H \cdot A \cdot \frac{d^2 + d \cdot d_2 + d_2^2}{d^2}$
							A siehe Formel 30
Obelisk H							
Grundfläche aus a, c, h	27	±Η	a a ₂	C C ₂	h h ₂	*	$V = \frac{1}{12} \cdot H \cdot [(a + c) \cdot (h_2 + 2 \cdot h) + (a_2 + c_2) \cdot (h + 2 \cdot h_2)]$

	-	Eing	abea	nweis	ung		
Geometrische Figur	FO			Wert	-		Formel, Berechnung
		1	2	3	4	5	
Dreieck aus g, h	40		±g	±h		*	A = $\frac{1}{2} \cdot g \cdot h$ Hinweis: Formeln 41 bis 49 siehe nach Formel 90
Dreieck aus a, b, c	50		а	b	С	*	A = $\sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$ (Heronsche Flächenformel) Hilfswert: $s = \frac{1}{2} \cdot (a+b+c)$ Hinweis: Formeln 51 bis 59 siehe nach Formel 90
Dreieck aus a, b, γ	60		±a	±b	γ	*	A = $\frac{1}{2}$ · a · b · sin γ Hinweis: Formeln 61 bis 69 siehe nach Formel 90

	Fino	ahea	nweie	ına		
	<u> </u>			ung		Formel, Berechnung
FO	1	2	3	4	5	,
70		а	±b	α	*	$A = \frac{1}{2} \cdot b \cdot X \cdot \sin \alpha $ Hilfswert:
						$X = b \cdot \cos \alpha + \frac{\alpha}{ \alpha } \cdot \sqrt{a^2 - b^2 \cdot \sin^2 \alpha}$ Hinweis: $a \geqslant b : \alpha \text{ positiv eingeben}$
						a ≤ Ibl und Winkel gegenüber b stumpf: α negativ eingeben
						a ≤ Ibl und Winkel gegenüber b spitz: α positiv eingeben Hinweis: Formeln 71 bis 79 siehe nach Formel 90
80		b	γ	α	*	$A = \frac{b^2}{2 \cdot (\cot \alpha + \cot \gamma)}$ Hinweis:
						Formeln 81 bis 89 siehe nach Formel 90
90		а	γ	α	*	$A = \frac{a^2}{2 \cdot (\cot \gamma + \cot \beta)}$ $\beta = \pi \cdot \varrho - (\alpha + \gamma)$
	80	FO 1 70 80 80 80	FO 1 2 a a s a a a a a a a a a a a a a a a a	FO 1 2 3 70 a ± b 80 b γ	1 2 3 4 70 a ±b α 80 b γ α	FO 1 2 3 4 5 70 a ±b α * 80 b γ α *

O a marking to E		Eing	gabea	nweis	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Prisma							V = H·A
Grundfläche							
h g	41	±Η	±g	±h		*	A siehe Formel 40
	51	±Η	а	b	С	*	A siehe Formel 50
	61	±Η	±a	±b	γ	*	A siehe Formel 60
a	71	±Η	а	±b	α	*	A und Vorzeichen von α siehe Formel 70
a b	81	±Η	b	γ	α	*	A siehe Formel 80
a d	91	±Η	а	γ	α	*	A siehe Formel 90

		Ein	gabea	anweis	suna		
Geometrische Figur	FO			Wert			Formel, Berechnung
		1	2	3	4	5	
Pyramide							$V = \frac{1}{3} \cdot H \cdot A$
H							
Grundfläche	}						
h g	42	±Η	±g	±h		*	A siehe Formel 40
* b	52	±Η	а	b	С	*	A siehe Formel 50
b b	62	±Η	±a	±b	γ	*	A siehe Formel 60
α	72	±Η	а	±b	α	*	A und Vorzeichen von α siehe Formel 70
T b	82	±Η	b	γ	α	*	A siehe Formel 80
a d	92	±Η	а	γ	α	*	A siehe Formel 90

		Eing		nweisi	ung		Formal Parachauna
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Pyramidenstumpf C2 H 192,02 Grundfläche							
h g	43	±Η	g [g₂]	h [h₂]		*	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{g^2 + g \cdot g_2 + g_2^2}{g^2} \text{ oder}$ $V = \frac{1}{3} \cdot H \cdot A \cdot \frac{h^2 + h \cdot h_2 + h_2^2}{h^2}$ A siehe Formel 40
	53	±Η	a [a ₂]	b [b ₂]	C [C ₂]	*	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{a^2 + a \cdot a_2 + a_2^2}{a^2} \text{ oder}$ $V = \frac{1}{3} \cdot H \cdot A \cdot \frac{b^2 + b \cdot b_2 + b_2^2}{b^2} \text{ oder}$ $V = \frac{1}{3} \cdot H \cdot A \cdot \frac{c^2 + c \cdot c_2 + c_2^2}{c^2}$ A siehe Formel 50
	63	±Η	a [a ₂]	b [b ₂]	γ	*	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{a^2 + a \cdot a_2 + a_2^2}{a^2} \text{ oder}$ $V = \frac{1}{3} \cdot H \cdot A \cdot \frac{b^2 + b \cdot b_2 + b_2^2}{b^2}$ A siehe Formel 60
a b	73	±Η	a [a ₂]	b [b ₂]	α	*	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{a^2 + a \cdot a_2 + a_2^2}{a^2} \text{ oder}$ $V = \frac{1}{3} \cdot H \cdot A \cdot \frac{b^2 + b \cdot b_2 + b_2^2}{b^2}$ A und Vorzeichen von α siehe Formel 70
b V	83	±Η	b b ₂	γ	α	*	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{b^2 + b \cdot b_2 + b_2^2}{b^2}$ A siehe Formel 80
a a	93	±Η	a a ₂	γ	α	*	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{a^2 + a \cdot a_2 + a_2^2}{a^2}$ A siehe Formel 90

		Eing	jabea	nweis	ung		
Geometrische Figur	FO			Wert	4	_	Formel, Berechnung
Prisma schief abgeschnitten		1	2	3	4	5	$V = \frac{1}{3} \cdot (H_1 + H_2 + H_3) \cdot A$
Grundfläche							
h g	46		±g H₁	±h H₂	H ₃	*	A siehe Formel 40
c b b	56		a H₁	b H ₂	C H₃	*	A siehe Formel 50
b a	66		±a H₁	±b H ₂	γ H ₃	*	A siehe Formel 60
	76		a H,	±b H ₂	$lpha$ H_3	*	A und Vorzeichen von α siehe Formel 70
a b	86		b H,	γ H ₂	α H ₃	*	A siehe Formel 80
α γ γ a γ	96		a H₁	γ H ₂	α H ₃	*	A siehe Formel 90

Coomatricales Figure		Eing		nweis Wert	ung		Formal Parachauna
Geometrische Figur	FO	1	2	3	4	5	Formel, Berechnung
Prisma schief abgeschnitten							$V = H_S \cdot A$ $H_S = H$ öhe im Schwerpunkt
Grundfläche							
h g	47	±H _s	±g	±h		*	A siehe Formel 40
c b	57	±H _s	а	b	С	*	A siehe Formel 50
	67	±Hs	±a	±b	γ	*	A siehe Formel 60
	77	±H _s	а	±b	α	*	A und Vorzeichen von α siehe Formel 70
b y	87	± H _s	b	γ	α	*	A siehe Formel 80
a a	97	±H _s	а	γ	α	*	A siehe Formel 90

		Eing	abear		ıng		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Prisma Kanten durch ein horizontales Basisdreieck, schiefe Grund- und Deckfläche durch Höhenkoordinaten gegeben			2	3	4	5	$V = \frac{1}{3} \cdot [(z_1' + z_2' + z_3') - (z_1 + z_2 + z_3)] \cdot A$
Basisdreieck	48		± g z ₁ z ₁	±h z ₂ z ₂	Z ₃ Z ₃	*	A siehe Formel 40
c b b	58		a z ₁ z' ₁	b z ₂ z',	C Z ₃ Z' ₃	*	A siehe Formel 50
b a	68		±a z, z,	± b z ₂ z' ₂	γ z ₃ z' ₃	*	A siehe Formel 60
a b	78		a Z ₁ Z' ₁	± b z ₂ z ₂	α z ₃ z ₃	*	A und Vorzeichen von α siehe Formel 70
α b	88		b z ₁ z' ₁	γ z ₂ z' ₂	α z ₃ z ₃	*	A siehe Formel 80
α γ a	98		a z ₁ z' ₁	γ z ₂ z ₂	α z ₃ , z ₃	*	A siehe Formel 90

		Ein	gabea		ung		
Geometrische Figur	FO	4	0	Wert			Formel, Berechnung
Prisma Kanten durch ein horizontales Basisdreieck, schiefe Grund- und Deckfläche durch Höhenkoordinaten im Schwerpunkt gegeben	FO	1	2	3	4	5	$V = (z'_s - z_s) \cdot A$
Basisdreieck h g g h	49	Z _s Z' _s	±g	±h		*	A siehe Formel 40
c b	59	Z _s Z' _s	а	b	С	*	A siehe Formel 50
b a	69	Z _s Z's	±a	±b	γ	*	A siehe Formel 60
a b	79	Z _s Z's	а	±b	α	*	A und Vorzeichen von α siehe Formel 70
a b	89	Z _s Z _s	b	γ	α	*	A siehe Formel 80
a a	99	Z _s , Zs	а	γ	α	*	A siehe Formel 90

		Eing	abea	nweis	ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
	. 0	1	2	3	4	5	
Regelmäßiges n-Eck, offen	100		r	α	±n	*	
r a							$A = \frac{1}{2} \cdot r^2 \cdot \sin \alpha \cdot n$ $n = \text{Anzahl der gleichschenkeligen}$ Dreiecke
Prisma	101	±Η	г	α	±n	*	V = H · A A siehe Formel 100
Pyramide	102	±Η	r	α	±n	*	$V = \frac{1}{3} \cdot H \cdot A$ A siehe Formel 100
Pyramidenstumpf	103	±H	r r ₂	α	±n	*	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{r^2 + r \cdot r_2 + r_2^2}{r^2}$ A siehe Formel 100

		Eing		nweis	ung		F 1 B
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Regelmäßiges n-Eck, geschlossen	110		r		n	*	
*							$A = \frac{1}{2} \cdot r^2 \cdot \sin\left(\frac{2 \cdot \pi \cdot \varrho}{n}\right) \cdot n$ $n = \text{Anzahl der gleichschenkeligen}$ Dreiecke
Prisma	111	±Η	r		n	*	V = H · A A siehe Formel 110
Pyramide	112	±Η	r		n	*	$V = \frac{1}{3} \cdot H \cdot A$ A siehe Formel 110
Pyramidenstumpf H	113	±Η	r r ₂		n	*	$V = \frac{1}{3} \cdot H \cdot A \cdot \frac{r^2 + r \cdot r_2 + r_2^2}{r^2}$ A siehe Formel 110

		Eina	abear	weisu	ına		
Geometrische Figur	FO -			Wert			Formel, Berechnung
	. 0	1	2	3	4	5	
Unregelmäßiges n-Eck	120		n x ₁	y ₁		*	Flächenberechnung nach Gauß-Elling: $A = \frac{1}{2} \cdot \sum_{j=1}^{n} (x_{j+1} - x_{j}) \cdot (y_{j} + y_{j+1})$ $n = \text{Anzahl der Punkte eines}$ $\text{geschlossenen Streckenzuges}$ $n \text{ Folgedatensätze für die}$ $\text{Koordinaten der Punkte P}_{1} \dots P_{n}$
1=5 1=5 7 8 1=5 6=10 7 8 3 2 9 8							Hilfswerte: X _{n+1} = X ₁ y _{n+1} = y ₁ Wird die Fläche im Uhrzeigersinn umfahren, ist das Ergebnis positiv, ansonsten negativ. Besteht eine Fläche aus 2 oder mehreren Teilflächen, so kann von jedem Punkt der 1. Teilfläche zu jedem Punkt der 2. Teilfläche gesprungen werden; der Rücksprung muß aber an derselben Stelle erfolgen.
Prisma	121	±Η	n x ₁ X _n	y ₁		*	V = H · A A siehe Formel 120 Hinweis: Eingabewerte siehe Formel 120
Pyramide	122	±H	n x ₁ · · · x _n	y ₁		*	V = $\frac{1}{3}$ · H · A A siehe Formel 120 Hinweis: Eingabewerte siehe Formel 120

		Einç	gabea	nweis	ung		
Geometrische Figur	FO	1	0	Wert	Л	E	Formel, Berechnung
Prisma schief abgeschnitten über unregelmäßigem n-Eck	FO 126	Eing 1	n x ₁ . x _k . x ₁ .		4	5 m	Die schiefe Schnittebene wird durch drei Punkte festgelegt, die ein möglichst gleichseitiges Dreieck bilden sollen. Die Indizes der drei zugehörigen Punkte der Grundrißfläche, die nach Gauß-Elling berechnet wird, müssen im gleichen Umfahrungssinn wie die Punkte der Grundfläche angegeben werden, für die jeweils das Koordinatenpaar (x, y) anzugeben ist. Für die drei ausgewählten Punkte k, I und m sind außerdem die Abstände der Schnittebene von der Grundrißfläche (Höhen) anzugeben. V = H _s · A A siehe Formel 120
S Schwerpunkt der Grundfläche S' Schwerpunkt der Deckfläche (schiefe Ebene)			X _m · X _n	У _m · У _n Н _k	H,	H _m	Bedingungen: k < l < m y _k ≠ y _l
							Schwerpunktkoordinaten: $x_s = \frac{1}{6 \cdot A} \cdot \sum_{j=1}^{n} (x_j^2 + x_j \cdot x_{j+1} + x_{j+1}^2) \cdot (y_j - y_{j+1})$ $y_s = \frac{1}{6 \cdot A} \cdot \sum_{j=1}^{n} (y_j^2 + y_j \cdot y_{j+1} + y_{j+1}^2) \cdot (x_{j+1} - x_j)$ Hilfswerte: $y_{km} = y_k - y_m$ $y_{ml} = y_m - y_l$ $y_{lk} = y_l - y_k$ $p = (x_s - x_k) \cdot y_{lk} - (y_s - y_k) \cdot (x_l - x_k)$ $q = H_m \cdot y_{lk} + H_l \cdot y_{km} + H_k \cdot y_{ml}$ $r = (y_s - y_k) \cdot (H_l - H_k)$ $s = x_m \cdot y_{lk} + x_l \cdot y_{km} + x_k \cdot y_{ml}$ Schwerpunktshöhe: $H_s = H_k + \frac{p \cdot q + r \cdot s}{s \cdot y_{lk}}$ Hinweis: Ein negatives Ergebnis wird entweder durch eine Umfahrung entgegen dem Uhrzeigersinn oder durch 3 negative Höhen bewirkt. $x_s, y_s, H_s \text{ und A sind zusätzlich auszugeben.}$

		Eing	abea	nweis	ung	-	
Geometrische Figur	EO			Wert			Formel, Berechnung
	-0	1	2	3	4	5	
Prismatoid über unregelmäßigem n-Eck Mittelfläche	FO 127					*	Grund- und Deckfläche sind allgemeine, geschlossene n-Ecke, in parallelen Ebenen liegend. Der Mantel wird aus Dreiecken oder windschiefen Trapezen zusammengesetzt. Die Grundfläche und die Deckfläche werden nach Gauß-Elling berechnet und müssen im gleichen Sinn umfahren werden. Für jeden ihrer Eckpunkte sind die Koordinaten x und y anzugeben. Die Anzahl der Punkte der Grundfläche und der Deckfläche können verschieden sein. Die Kanten des Prismatoides sind durch die Angabe der entsprechenden Indizes der Punkte der Grundfläche und der Deckfläche zu definieren. $V = \frac{1}{6} \cdot H \cdot (A + 4 \cdot A^m + A')$ $\begin{cases} n+m+N & \text{Folgedatensätze} \\ n = \text{Anzahl der Punkte} \\ \text{der Grundfläche} \\ \text{me Anzahl der Punkte} \\ \text{der Deckfläche} \\ \text{mit } m \leqq n \\ \text{N = Anzahl der Kanten}, \\ \text{die Grund- und Deckfläche} \\ \text{werbinden} \\ \text{K}_1 \dots \text{K}_N = \text{Indizes und Fußpunkte der} \\ \text{Kanten mit } 1 \leqslant \text{K}_j \leqslant n \\ \text{K}_1' \dots \text{K}_N' = \text{Indizes der Kopfpunkte} der \\ \text{Kanten mit } 1 \leqslant \text{K}_j \leqslant n \end{cases}$ $\begin{cases} \text{Koordinaten der Mittelfläche:} \\ \text{X}_j^m = \frac{1}{2} \cdot (x_{K_j} + x_{K_j'}) \\ \text{y}_j^m = \frac{1}{2} \cdot (y_{K_j} + y_{K_j'}) \end{cases}$ $\begin{cases} \text{Grundfläche:} \\ \text{A}^m = \frac{1}{2} \cdot \sum_{j=1}^{\infty} (x_{j+1}^m - x_j^m) \cdot (y_j^m + y_{j+1}^m) \\ \text{Mittelfläche:} \\ \text{Merbinsen:} \end{cases}$ $\begin{cases} \text{Deckfläche:} \end{cases}$
							Deckflache: $A' = \frac{1}{2} \cdot \sum_{j=1}^{m} (x_{j+1}' - x_{j}') \cdot (y_{j}' + y_{j+1}')$ Hilfswerte: $x_{n+1} = x_{1} \qquad y_{N+1}^{m} = y_{1}^{m}$ $y_{n+1} = y_{1} \qquad x_{m+1}' = x_{1}'$ $x_{N+1}^{m} = x_{1}^{m} \qquad y_{m+1}' = y_{1}'$ A, A ^m und A' sind zusätzlich auszugeben.

	ļ,	Eing		nweis	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Massenberechnung bei gerader Achse	128		n x ₁ · ·	а _і У ₁ У _п		*	Für jedes Profil ist ein Hauptdatensatz und die dem Profil entsprechende Anzahl der Folgedatensätze einzugeben. $V = \frac{1}{2} \cdot A_i \cdot (a_{i-1} + a_i)$ $A_i siehe A von Formel 120$ n Folgedatensätze
Profil 4 9 9 9 9 9 9 9 9 9 9 9 9 9							Hinweis: Der Wert a _{i-1} wird vom vorangehenden Hauptdatensatz für das Profil i – 1 automatisch übernommen; beim 1. Profil wird er Null gesetzt. Beim letzten Profil ist a _i Null zu setzen, wenn die Massenberechnung in der Profilebene abgeschlossen wird. Ein Wert a _i > 0 bedeutet, daß die letzte Profilfläche mit a _i /2 multipliziert in die Volumsberechnung eingeht ("keilförmiger Auslauf"). Bei einem Profilflächensprung sind an der Sprungstelle 2 Profile mit dem Abstand a _i = 0 anzuordnen. Entartete Profile werden für den Anlauf und Auslauf von Profilmassen benötigt: Punkt: n = 1 Linie: n = 2 A _i ist zusätzlich auszugeben.

		Eing	abea	nweisı	ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
		1	2	3	4	5	
Massenberechnung bei gekrümmter Achse	129		n	a ,	$oldsymbol{eta}_{ ext{i}}$	~	Für jedes Profil ist ein Hauptdatensatz und die dem Profil entsprechende Anzahl der Folgedatensätze einzugeben. Der Hauptdatensatz enthält zusätzlich zur Formel 128 die Brechungswinkel der Achse im Grundriß. $V = \frac{1}{2} \cdot A_i \cdot (b_{i-1} + b_i)$
β_{i-1} γ_{i-1} γ_{i-1} γ_{i-1} γ_{i-1} γ_{i-1} γ_{i-1} γ_{i-1}			X ₁ X _n	y ₁ y _n	71	71	A _i siehe A von Formel 120 n Folgedatensätze
Hier: β_{i-1} , $\gamma_{i-1} > 0$ β_i , $\gamma_i < 0$							Schwerpunktabstand im Profil i:
β _i = Winkel zum nächsten Profil (im Uhrzeiger- sinn positiv)							$x_{s,i} = \frac{1}{6 \cdot A_i} \cdot \sum_{j=1}^{n} (X_j^2 + X_j \cdot X_{j+1} + X_{j+1}^2) \cdot (y_j - y_{j+1})$
 γ_i = Winkel zum voran- gehenden Profil (ent- gegen dem Uhrzeiger- 							wobei gilt: $x_{n+1} = x_1$ $y_{n+1} = y_1$
sinn positiv) a _i = Abstand der Schnitt- punkte der Koordinaten- achsen der Profile							Schwerpunktswegzwischen Profil i - 1 und Profil i: $b_{i-1} = \frac{\left[a_{i-1} \cdot \cos \beta_{i-1} - x_{s,i} \cdot \sin (\beta_{i-1} + \gamma_{i-1})\right]}{\varrho \cdot \sin (\beta_{i-1} + \gamma_{i-1})} \cdot (\beta_{i-1} + \gamma_{i-1})$
							Schwerpunktsweg zwischen Profil i und Profil i + 1: $b_i = \frac{[a_i \cdot \cos \beta_i - x_{s,i} \cdot \sin (\beta_i + \gamma_i)] \cdot (\beta_i + \gamma_i)}{\varrho \cdot \sin (\beta_i + \gamma_i)}$
							$\varrho \cdot \sin(\beta_i + \gamma_i)$ Hinweis: wie in Formel 128
							$x_{s,i}$, b_{i-1} , b_i und A_i sind zusätzlich auszugeben.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Einç	jabea	nweis	ung		
Punkthaufen 1 2 3 4 5 Die Grundfläche wird in Dreiecke zerlegt, die nicht notwendigerweise zusammenhängen müssen. Über den Dreiecken erheben sich schief abgeschnittene dreiseitige Prismen. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Geometrische Figur	FO			Wert			Formel, Berechnung
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	2	3	4	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Punkthaufen		1	n x ₁ · x _n K ₁₁	m y ₁ y _n K ₁₂	z ₁ . z _n . K ₁₃ .		Die Grundfläche wird in Dreiecke zerlegt, die nicht notwendigerweise zusammenhängen müssen. Über den Dreiecken erheben sich schief abgeschnittene dreiseitige Prismen. $V = \frac{1}{6} \cdot \sum_{j=1}^{m} [X_{K_{j1}} \cdot (y_{K_{j3}} - y_{K_{j2}}) + X_{K_{j2}} \cdot (y_{K_{j1}} - y_{K_{j3}}) + X_{K_{j3}} \cdot (y_{K_{j2}} - y_{K_{j1}})] \cdot (z_{K_{j1}} + z_{K_{j2}} + z_{K_{j3}})$ $n + m \text{Folgedatensätze}$ $n = \text{Anzahl der Punkte des Punkthaufens}$ $m = \text{Anzahl der dreiseitigen Prismen}$ $(= \text{Anzahl der Dreiecke}$ $\text{der Grundfläche})$ Für jeden Punkt sind die Koordinaten
								x, y und z anzugeben. K_{j1} , K_{j2} , K_{j3} = Indizes von 3 Punkten, die, im Uhrzeigersinn angegeben, eine Deckfläche bilden, mit 1 \leq j \leq m und K_{ji} \leq n, für i = 1, 2, 3 Hinweis: Ein negatives Ergebnis wird entweder durch eine Umfahrung der Prismen entgegen dem Uhrzeigersinn oder

		Eing	gabear	nweisı	ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
	, ,	1	2	3	4	5	
Rampe Geneigter Ansatz und geneigte Seiten	141	b	m [H]	n, [i]	n	*	$V = \frac{1}{6} \cdot H^2 \cdot (3 \cdot b + 2 \cdot H \cdot n_1 \cdot \frac{m-n}{m}) \cdot (m-n)$
1:n 1:n 1:n							Wird I angegeben, gilt: H = I √1 + m²
b 1:m							
Rampe Lotrechter Ansatz und geneigte Seiten	142	b	±m [H]	n ₁ [l]		*	$V = \frac{1}{6} \cdot H^2 \cdot (3 \cdot b + 2 \cdot H \cdot n_1) \cdot m$
H 1:m *							Wird I angegeben, gilt: $H = \frac{I}{\sqrt{1 + m^2}}$
1:n ₁							

		Eing	abear		ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Rampe Geneigter Ansatz und lotrechte Seiten	143	±b	m [H]	[1]	n		$V = \frac{1}{2} \cdot H^2 \cdot b \cdot (m-n)$ Wird I angegeben, gilt: $H = \frac{1}{\sqrt{1+m^2}}$
Rampe Lotrechter Ansatz und lotrechte Seiten	144	±b	±m [H]	[1]		*	$V = \frac{1}{2} \cdot H^2 \cdot b \cdot m$ Wird I angegeben, gilt: $H = \frac{I}{\sqrt{1 + m^2}}$
b 1: m							
Rampe schräg angesetzt	145	b	H H	n		*	$V = \frac{b \cdot H}{2} \cdot \left(\frac{b}{n} \cdot \sqrt{m^2 - n^2} + \frac{H}{m} \cdot \left(m^2 - n^2 \right) \right)$ H = Höhe des Dammes Ergebnis ist die Masse zusätzlich zum normalen Damm
Damm b/2	146	b	m H	n [I]		*	$A = H \cdot (b + n \cdot H) + \frac{n}{m^2 - n^2} \cdot \left(\frac{b}{2} + n \cdot H\right)^2$ $V = A \cdot I$

		Eing	jabea	nweis	ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
Fläche	150	1	2 ±a	3 n	4	<u>5</u> *	Λ ο Σ Ι
nach Rechteckregel	150		b ₁	11		*	$A = a \cdot \sum_{i=1}^{n} b_i$
			b _n				n Folgedatensätze n = Anzahl der Rechtecke
b_1 b_2 b_3 b_{n-1} b_n							Hinweis: Soll ein einzelnes Rechteck abgezogen werden, ist seine Länge b _i negativ ein- zugeben.
Prisma	151	±Η	± a b ₁ · · · b _n	n		*	V = H · A A siehe Formel 150 n Folgedatensätze
							H = konstante Höhe des Prismas über der Grundfläche
Fläche nach Trapezregel mit konstanten Abständen	160		±a b ₁	n		*	$A = a \cdot \left(\frac{b_1 + b_n}{2} + \sum_{i=2}^{n-1} b_i\right)$
b ₁ b ₃ b ₄ b _{n-1} b _n			b _n				n Folgedatensätze n = Anzahl der Breiten
Prisma	161	±H	±a b ₁ b _n	n		*	V = H · A A siehe Formel 160 n Folgedatensätze H = konstante Höhe des Prismas über der Grundfläche

		Ein	gabea	nweis	ung		
Geometrische Figur	FO	4	2	Wert 3	1	Ė	Formel, Berechnung
Fläche nach Trapezregel mit variablen Abständen	170	1	b ₁	n a ₁	4	*	$A = \frac{1}{2} \cdot \sum_{i=2}^{n} a_{i-1} \cdot (b_{i-1} + b_{i})$ $n \text{Folgedatensätze}$ $n = \text{Anzahl der Breiten}$ Hinweis: $\text{Soll ein einzelnes Trapez abgezogen werden, ist seine Höhe } a_{i} \text{ negativ einzugeben.}$
Prisma	171	±Η	b ₁	n a ₁ a _{n-1}		*	V = H · A A siehe Formel 170 n Folgedatensätze H = konstante Höhe des Prismas über der Grundfläche
Fläche nach Trapezregel aus Stationsaufnahme	172		b ₁ b _n	n S ₁ S _n		*	$A = \frac{1}{2} \cdot \sum_{i=2}^{n} \left(s_i - s_{i-1} \right) \cdot \left(b_i + b_{i-1} \right)$ Die Station s_1 zu b_1 kann auch $<> 0$ sein. Bei einem Breitensprung sind jeweils 2 Breiten mit jeweils der gleichen Station anzugeben. n Folgedatensätze
Prisma (konstante Höhe)	173	Н	b ₁	n S ₁ S _n		*	V = A·H A siehe Formel 172 H = konstante Höhe des Prismas über der Grundfläche n Folgedatensätze
Prisma (variable Höhe)	174		b ₁	n S ₁ S _n	H ₁	*	$A = \frac{1}{4} \cdot \sum_{i=2}^{n} (s_i - s_{i-1}) \cdot (b_i + b_{i-1}) \cdot (H_i + H_{i-1})$ $n \text{Folgedatensätze}$

		Einc	abea	nweis	ung		Formel, Berechnung
Geometrische Figur	FO			Wert			
	-0	1	2	3	4	5	
Fläche nach Simpson mittlerer Punkt b ₂ b ₃ b ₄ b _{n-1} b _n Flächenstreifen (n-1)·a	180		± a b ₁ · · · b _n	n		*	Flächenberechnung mit dieser Formel bedeutet, daß durch jeweils drei Punkte eine quadratische Parabel gelegt wird und damit die Fläche des zum mittleren Punkt gehörigen Streifens berechnet wird. $A = \frac{a}{3} \cdot (b_1 + b_n + 4 \cdot \sum_{i=2,4,\dots}^{n-1} b_i + 2 \cdot \sum_{i=3,5,\dots}^{n-2} b_i)$ n Folgedatensätze $n = \text{Anzahl der Breiten, muß ungerade sein}$
Prisma	181	±	± a b · · · · b n	n		*	V = H · A A siehe Formel 180 n Folgedatensätze H = konstante Höhe des Prismas über der Grundfläche
Fläche polar mit konstantem Zentri-winkel	190		α r ₁ · · · r _n	n		*	$ \begin{cases} A = \frac{\sin \alpha}{2} \cdot \sum\limits_{i=1}^{n-1} (r_i \cdot r_{i+1}) \\ \\ n \text{Folgedatensätze} \end{cases} $ $ n = \text{Anzahl der Polarabstände} $
Prisma	191	±Η	α r ₁ r _n	n		*	V = H · A A siehe Formel 190 n Folgedatensätze H = konstante Höhe des Prismas über der Grundfläche

		Eing		nweisı	ıng			
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung	
Fläche polar mit variablem Zentri-winkel	200		r ₁	$egin{array}{c} \mathbf{n} & & & & & & & & & & & & & & & & & & &$		*	$ \begin{cases} A = \frac{1}{2} \cdot \sum\limits_{i=1}^{n-1} r_i \cdot r_{i+1} \cdot \sin \alpha_i \\ \\ n \text{Folgedatensätze} \end{cases} $ $ n = \text{Anzahl der Polarabstände} $	
A _b A _a							Hinweis: Wenn der Polarpunkt P außerhalb der Fläche liegt, ist von der Fläche der Außenkontur A _a die Fläche der Innenkontur A _b abzuziehen.	
Prisma	201	±H	r ₁	$egin{array}{c} \mathbf{n} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$		*	V = H · A A siehe Formel 200 n Folgedatensätze H = konstante Höhe des Prismas über der Grundfläche	

		Eing	abea	nweis	ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
Kreis	210	1	2	3 r	4	*	$A = r^2 \cdot \pi$
Zylinder ×	211	±Η		г		*	V = H · A A siehe Formel 210
Kegel	212	±Η		r		*	$V = \frac{1}{3} \cdot H \cdot A$ A siehe Formel 210
Kegelstumpf H T2	213	±Η		r	r ₂	*	$V = \frac{1}{3} \cdot H \cdot \pi \cdot (r^2 + r \cdot r_2 + r_2^2)$

		Eing	gabea		ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Kreissektor	220		q	r	•	*	$A = \frac{r^2 \cdot \varphi}{2 \cdot \varrho}$
Zylindersektor	221	±Η	φ	r		*	V = H·A
H							A siehe Formel 220
Kreisringsektor	230		$\begin{pmatrix} \varphi \\ \mathbf{b} \end{pmatrix}$	r ₁	r ₂	*	$A = \frac{\varphi}{2 \cdot \varrho} (r_1^2 - r_2^2)$ Hinweis: $\varphi = \mathbb{B}$ gilt für geschlossenen Kreisring $A = (r_1^2 - r_2^2) \cdot \pi$
Röhrensektor	231	±H	$\begin{pmatrix} \varphi \\ \mathbf{b} \end{pmatrix}$	r ₁	r ₂	*	V = H·A
H							A siehe Formel 230

		Eing	jabeai		ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
Kreissegment aus φ (Zentriwinkel)	240	1	φ	r	4	*	$A = \frac{1}{2} \cdot r^2 \cdot \left(\frac{\varphi}{\varrho} - \sin \varphi \right)$
Zylindersegment	241	±Η	φ	Γ		*	V = H · A A siehe Formel 240
Zylinderhuf	246	±Η	(\$)	r		*	$V = H \cdot A \cdot \frac{\frac{2 \cdot r^2 \cdot \left(\sin\frac{\varphi}{2}\right)^3}{3 \cdot A} - \cos\frac{\varphi}{2}}{1 - \cos\frac{\varphi}{2}}$ A siehe Formel 240 Hinweis: $\varphi = \text{ b gilt für Zylinderhuf mit Kreis als Grundfläche}$ $V = \frac{1}{2} \cdot H \cdot r^2 \cdot \pi$

		Eing		nweis	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
	2=2				4	-	a .,,
Kreissegment	250		а	f		*	Fürf $\leqslant \frac{a}{2}$ gilt:
aus f (Stichhöhe)							$A = r^{2} \cdot \arcsin \frac{a}{2 \cdot r} - \frac{a}{2} \cdot (r - f)$ $F \ddot{u} f \geqslant \frac{a}{2} \text{ gilt:}$ $A = r^{2} \left(\pi - \arcsin \frac{a}{2 \cdot r}\right) + \frac{a}{2} \cdot (f - r)$
							Hilfswert: $r = \frac{a^2 + 4 \cdot f^2}{8 \cdot f}$
Zylindersegment	251	±Η	а	f		*	V = H · A A siehe Formel 250

		Eina	abear	nweisu	ıng		
Geometrische Figur	FO			Wert			Formel, Berechnung
_	- 0	1	2	3	4	5	
Kreiszwickel, rechtwinkelig	260		φ	r		*	$A = \frac{1}{2} \cdot r^2 \cdot \left[(2 - \cos \beta) \cdot \sin \beta - \right]$
aus $oldsymbol{arphi}$, r							$-\frac{\beta}{\varrho} + (Q-1) \cdot \left(2 - \frac{\pi}{2}\right)$
γφς							Hilfswerte: Q bezieht sich auf den vorliegenden Quadranten
$0\leqslant arphi< 2\cdot \pi\cdot arrho$							$0 \leqslant \varphi < \frac{\pi \cdot \varrho}{2} \Rightarrow Q = 1$ $\frac{\pi \cdot \varrho}{2} \leqslant \varphi < \pi \cdot \varrho \Rightarrow Q = 2$
							$\pi \cdot \varrho \leqslant \varphi < \frac{3 \cdot \pi \cdot \varrho}{2} \Rightarrow Q = 3$
							$\frac{3 \cdot \pi \cdot \varrho}{2} \leqslant \varphi < 2 \cdot \pi \cdot \varrho \Rightarrow Q = 4$
							Q= 2 Q=3 Q=4
							$\beta = \varphi - (Q - 1) \cdot \frac{\pi \cdot \varrho}{2}$
Zylinderzwickel	261	±Η	φ	r		*	V = H · A A siehe Formel 260
H							A Signe i office 200
							1

		Eing		nweisı	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Kreiszwickel, rechtwinkelig	270		a	b	4		$A = \frac{1}{2} \cdot r^2 \cdot \left[(2 - \cos \varphi) \cdot \sin \varphi - \frac{\varphi}{\varrho} \right]$
aus a, b							Hilfswerte: $\varphi = 2 \cdot \arctan \frac{a}{b}$ $r = \frac{b}{\sin \varphi}$
Bedingungen:							
a ≤ b b muß Tangente sein							
Zylinderzwickel	271	±Η	а	b		*	V = H · A A siehe Formel 270
H							

		Eing		nweis	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Kreiszwickel, gleichschenkelig	280		φ	r	4		$A = r^2 \cdot \left[\tan \frac{\varphi}{2} - \frac{\varphi}{2 \cdot \varrho} \right]$
$0 < \varphi < \pi \cdot \varrho$							
Zylinderzwickel	281	±Η	φ	r		*	V = H · A A siehe Formel 280
H							

		Eing	gabea	nweis	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Ellipse	290		±a	±b		*	$A = a \cdot b \cdot \pi$
Zylinder	291	±Η	±a	±b		*	V = H · A A siehe Formel 290
H ×							
Kübel (Bottich)	293	±Η	а	b	a ₂	b ₂	$V = \frac{1}{6} \cdot H \cdot \pi \cdot [(2 a_2 + a) \cdot b_2 + $ $+ (2 a + a_2) \cdot b]$
$\frac{a_2}{b_2}$							

		Einc	abea	nweis	una		
Geometrische Figur	FO			Wert			Formel, Berechnung
5	FO	1	2	3	4	5	,
Parabel Fläche	300		±a	±b	(Z Ø)	*	$A = \frac{N}{N+1} \cdot a \cdot b$ Hinweis: $N = \text{Grad der Ordnung der Parabel}$ $N = b \text{ bedeutet Parabel 2. Ordnung}$
Prisma	301	±Η	±a	±b	(Z GR	*	V = H · A A siehe Formel 300
Parabelzwickel Konkaves Segment	310		±a	±b	(N)	*	$A = \frac{1}{N+1} \cdot a \cdot b$ Hinweis: $N = \text{Grad der Ordnung der Parabel}$ $N = b \text{ bedeutet Parabel 2. Ordnung}$
Prisma	311	±Η	±a	±b	(N	*	V = H · A A siehe Formel 310

		Ein	gabea	nweis	ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
		1	2	3	4	5	
Unregelmäßiges n-Eck mit Segmenten aus karthesischen Koordinaten +y P2 Kreis Pn AM(x _M , y _M) +x	380	n	k	-		*	Die Polygonfläche wird nach Gauß-Elling berechnet. Wird sie im Uhrzeigersinn umfahren, ist sie positiv, ansonsten negativ. Zwei benachbarte Punkte können durch eine Gerade (Fall 1), einen Kreisbogen (Fall 2) oder den Scheitel einer quadratischen Parabel (Fall 3) verbunden sein. Die entstehenden Segmente werden zur Polygonfläche addiert, wenn das Segment links von der Verbindungsgeraden zum nächsten Polygonpunkt liegt, bzw. von der Polygonfläche subtrahiert, wenn das Segment rechts liegt. $A = A_N + \sum_{i=1}^k A_{KS,i} + \sum_{i=1}^l A_{PS,i}$ $n = \text{Anzahl der Polygonpunkte}$ $A_N = \text{Fläche des Polygons}$ $k = \text{Anzahl der Kreissegmente}$ $A_{KS,i} = \text{Fläche eines Kreissegmentes}$ $I = \text{Anzahl der Parabelsegmente}$ $A_{PS,i} = \text{Fläche eines Parabelsegmentes}$
		('G','K','P')	x _i	y, (KZK) (KZP)	(x _M)	(YM)	die Art seiner Verbindung zum nächsten Punkt an (s. u. Fälle 1, 2, 3).

		Eind	gabea	nweis	ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
_	FU	1	2	3	4	5	·
(Fortsetzung Formel 380) Fall 1: Gerade							Es ist nur 1 Folgedatensatz notwendig:
P _{i+1}		('œ')	Xi	y i			Kennzeichen für Gerade: 'G' oder 'b' Punktkoordinaten x _i , y _i
Fall 2: Kreissegment							Es sind 2 Folgedatensätze notwendig:
P _{i+1}		'K'	X,	Уі	(*M)	(_M)	Punktsatz: Kennzeichen für Kreissegment 'K' Punktkoordinaten x_i , y_i Kreismittelpunktkoordinaten x_M und y_M , falls der Mittelpunkt ein Bestimmungs- stück ist.
M(xm,ym)			KZS	KZK	(p)	(KZM)	des Segmentes: KZS = 'L' Segment liegt links KZS = 'R' Segment liegt rechts Kennzeichen KZK für Art des Bestimmungsstückes: KZK = 'F' Pfeilhöhe f KZK = 'R' Radius r KZK = 'T' Tangentenlänge t KZK = 'M' Kreismittelpunkt (x _M ,y _M) Bestimmungsstück b, abhängig von der Art KZK: b = f bei KZK = 'F' b = r bei KZK = 'R' b = t bei KZK = 'T' b = 'b' bei KZK = 'M' Kennzeichen KZM für Lage des Kreis-
KZM='L' P_{i} P_{i+1} P_{i+1} P_{i+1}							mittelpunktes, abhängig von KZK: KZM = 'b' bei KZK = 'M' KZM = 'L' Kreismittelpunkt liegt links KZM = 'R' Kreismittelpunkt liegt rechts

Geometrische Figur FO 1 2 3 4 5 (Fortsetzung Formel 380) Fall 3: Parabelsegment 'P' x, y, KZS KZP b KZS T' Segment liegt finks KZS - 'R' Segment liegt finks KZP - 'R' Pelinküher f KZP - 'R' Tangentenlänge t Bestimmungsstück b, abhängig von der Art KZP. Bestimmungsstück b, abhängig von der Art KZP. Bestimmungsstück b, abhängig von der Art KZP. Bestimmungsstück b, abhängig von der Art KZP.			Eing	gabea		ung		
(Fortsetzung Formel 380) Fall 3: Parabelsegment 'P' X _i y _i KZS KZP b Es sind 2 Folgedatensätze notwendig: Punktsatz: Kennzeichen für Parabelsegment 'P' Punktkoordinaten x _i , y _i Bogensatz: Kennzeichen KZS für Lage des Segmentes: KZS = 'L' Segment liegt links KZS = 'R' Segment liegt rechts Kennzeichen KZP für Art des Bestimmungsstückes: KZP = 'F' Pfeilhöhe f KZP = 'T' Tangentenlänge t Bestimmungsstück b, abhängig von der Art KZP: b = f bei KZP = 'F'	Geometrische Figur	FO	1			4	5	Formel, Berechnung
	(Fortsetzung Formel 380) Fall 3: Parabelsegment	FO	1	2 x _i	Wert 3	4	5	Punktsatz: Kennzeichen für Parabelsegment 'P' Punktkoordinaten x _i , y _i Bogensatz: Kennzeichen KZS für Lage des Segmentes: KZS = 'L' Segment liegt links KZS = 'R' Segment liegt rechts Kennzeichen KZP für Art des Bestimmungsstückes: KZP = 'F' Pfeilhöhe f KZP = 'T' Tangentenlänge t Bestimmungsstück b, abhängig von der Art KZP: b = f bei KZP = 'F'

		Eing	jabeai	nweis	ıng		
Geometrische Figur	FO			Wert			Formel, Berechnung
	'	1	2	3	4	5	
(Fortsetzung Formel 380)							Hinweise für die Berechnung: Für alle Formeln gilt: $x_{n+1} = x_1$ $y_{n+1} = y_1$
							Polygonfläche: $A_{N} = \frac{1}{2} \cdot \sum_{j=1}^{n} (x_{j+1} - x_{j}) \cdot (y_{j} + y_{j+1})$
							Fläche Kreissegment: Distanz zum nächsten Polygonpunkt: $d = \sqrt{(x_{j+1} - x_j)^2 + (y_{j+1} - y_j)^2}$
							Zentriwinkel: $\alpha = 2 \cdot \arcsin\left(\frac{d}{2 \cdot r}\right)$ Wenn r nicht gegeben: Berechnung aus f: $r = \frac{d^2 + 4 \cdot f^2}{8 \cdot f}$
	ļ						Berechnung aus t: $r = \frac{d \cdot t}{\sqrt{4 \cdot t^2 - d^2}}$ Berechnung aus M:
							$r = \sqrt{(x_M - x_j)^2 + (y_M - y_j)^2}$
							$A_{KS} = \pm \frac{r^2}{2} \cdot (\alpha - \sin \alpha)$ wenn KZS \neq KZM $A_{KS} = \pm \frac{r^2}{2} \cdot [2 \cdot \pi - (\alpha - \sin \alpha)]$ wenn KZS = KZM $A_{KS} > 0 \text{ wenn KZS} = \text{'L'}$ $A_{KS} < 0 \text{ wenn KZS} = \text{'R'}$
							Fläche Parabelsegment: Distanz zum nächsten Polygonpunkt: $d = \sqrt{(x_{j+1} - x_j)^2 + (y_{j+1} - y_j)^2}$
							Wenn f nicht gegeben: $f = \frac{\sqrt{t^2 - \left(\frac{d}{2}\right)^2}}{2}$
							$A_{PS} = \pm \frac{2 \cdot d \cdot f}{3}$ $A_{PS} > 0 \text{ wenn KZS} = 'L'$ $A_{PS} < 0 \text{ wenn KZS} = 'R'$

		Fino	abea	nweis	una		
Geometrische Figur		9	Jaboa	Wert	ung		Formel, Berechnung
accinomonio rigar	FO	1	2	3	4	5	, control, boroomang
Unregelmäßiges n-Eck mit Segmenten aus Polarkoordinaten P1 P2 P1 P1 P2 Pn-1 Pn-1 Pn-1 Pn-1	390	n	k	('A',	$\binom{b}{\alpha}$	*	Es erfolgt die Flächenberechnung eines ebenen, geschlossenen Polygons in horizontaler oder geneigter Lage, dessen Seiten aus Geraden und/oder Kreisbögen bestehen. $A = (A_N + \sum_{i=1}^k A_{KS,i}) \cdot \frac{1}{\cos \alpha}$ $n = \text{Anzahl der Polygonpunkte}$ $A_N = \text{Fläche des Polygons}$ $k = \text{Anzahl der Bogenhilfspunkte und somit Anzahl der Kreissegmente}$ $A_{KS,i} = \text{Fläche eines Kreissegmentes}$ $\alpha = \text{Neigung der Ebene}$
+z		('H')	r _i	ϑ_{i}	(b) (Si)		kennzeichen für Art der Angabe der Neigung der Ebene 'b' bedeutet α in Neugrad 'A' bedeutet α in Altgrad 'P' bedeutet α in Promille n + k Folgedatensätze (und zwar für jeden Polygonpunkt und jeden Bogenhilfspunkt): Kennzeichen für Art des Punktes: 'b' = Polygonpunkt 'H' = Bogenhilfspunkt r _i = schräge bzw. horizontale Distanz θ _i = Azimut ζ _i = Zenit bei schräger Distanz bzw. b bei horizontaler Distanz (d.h. ζ _i = 100° bzw. 90°) Die Kennzeichen werden linksbündig eingetragen, also: 'H' in Spalte 11 'A', 'P' in Spalte 31

		Eing	jabea	nweis	ung		
Geometrische Figur	FO			Wert	4	_	Formel, Berechnung
(Fortsetzung Formel 390)		1	2	3	4	5	
1							Hinweise für die Messung: Meß-Methode I: Unmittelbare Messung der geneigten Ebene Der Beobachtungsstandpunkt befindet sich (annähernd) in der Flächenebene. Das Zielgerät wird auf Instrumentenhöhe eingestellt. Die schrägen Distanzen werden nicht horizontiert und bleiben damit
Γ _i P _i							parallel zur aufzunehmenden Ebene. Es wird unmittelbar das Flächenausmaß der geneigten Fläche ermittelt. Meß-Methode II: Horizontalaufnahme mit Neigungszuschlag Diese Methode ist anzuwenden, wenn sich der Beobachtungsstandpunkt nicht in der Flächenebene anordnen läßt. In diesem Fall werden die horizontalen Distanzen ermittelt. Berechnet wird zuerst das Flächenausmaß in der Horizontalen. Danach wird die Neigung der Flächenebene (der Fallinie) durch den Faktor 1/cos α berücksichtigt. Hinweis: Mit zunehmender Neigung der Ebene wirken sich Ungenauigkeiten bei der Erfassung der Neigungsangabe stärker auf die Genauigkeit der Flächenermittlung aus.

		Eing	jabea	nweis	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
(Fortsetzung Formel 390) In die durch P ₁ gehende lotrechte (x, y)-Ebene projizierte Aufnahmefigur:							Hinweise für die Berechnung: Umwandlung in kartesische Raum- koordinaten: $x = r \cdot \cos \vartheta \cdot \sin \zeta$ $y = r \cdot \sin \vartheta \cdot \sin \zeta$
P_i Y_i P_i X_i Y_i							Fläche Polygon: $A_{N} = \frac{1}{2} \cdot \sum_{j=1}^{n} (x_{j+1} - x_{j}) \cdot (y_{j} + y_{j+1})$ Die Polygonfläche wird nach Gauß-Elling berechnet. Wird sie im Uhrzeigersinn umfahren, ist sie positiv, ansonsten negativ. Die zwischen zwei Polygonpunkten eingeschalteten Bogenhilfspunkte werden hier nicht verarbeitet. Hilfswerte: $x_{n+1} = x_{1}$ $y_{n+1} = y_{1}$

Geometrische Figur		Eing		nweisı Wert	ıng		Formel, Berechnung
Geometrische Figur	FO	1	2	3	4	5	Tomer, bereaming
(Fortsetzung Formel 390)							Fläche Kreissegment: Die Formel hierfür ist nicht koordinatengerecht.
H _{KS} b _{KS} P _{j+1} B M _{KS(x_M,y_M)}							$A_{KS} = \frac{1}{2} \cdot [b_{KS} \cdot r_{KS} - s_{KS} \cdot (r_{KS} - f_{KS})]$ $b_{KS} = \text{Bogenlänge}$ $r_{KS} = \text{Radius}$ $s_{KS} = \text{Sehnenlänge}$ $f_{KS} = \text{Pfeilhöhe}$ Das Kreissegment ist durch seine beiden Eckpunkte und durch einen
				3			Bogenhilfspunkt (möglichst in Bogenmitte) bestimmt.
							Hilfswerte:
							Radius: $r_{KS} = \sqrt{(x-x_M)^2 + (y-y_M)^2}$
							Berechnung von x_M , y_M und r_{KS} mit der Kreisgleichung für die 3 Punkte P_j , H_{KS} und P_{j+1} :
							$(x - x_M)^2 + (y - y_M)^2 - r_{KS}^2 = 0$
							Sehne:
							$s_{KS} = \sqrt{(x_{j+1} - x_j)^2 + (y_{j+1} - y_j)^2}$
							Bogenlänge:
							$b_{KS} = r_{KS} \cdot \beta$ aufgrund
							$\sin\frac{\beta}{2} = \frac{s_{KS}}{2} \cdot \frac{1}{r_{KS}}$
							β ist der Zentriwinkel im Kreissegment
							Pfeilhöhe:
							$f_{KS} = r_{KS} \cdot (1 - \cos \frac{\beta}{2})$
							Vorzeichen der Fläche: Die Fläche des Kreissegmentes hat da gleiche Vorzeichen wie die nach Gauß-Elling berechnete Fläche des Dreiecke P _j , H _{KS} , P _{j+1} .

=		Eing	gabea	nweis	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Rotationskörper Trapez	401	r	h	а	b	(φ)	$V = \frac{1}{6} \cdot h \cdot [h \cdot (2 \cdot b + a) + \\ + 3 \cdot r \cdot (a + b)] \cdot \frac{\varphi}{\varrho}$ $Hinweis:$ $\varphi = b \text{ bedeutet den Vollkreis}$ $(\varphi = 2 \cdot \pi \cdot \varrho)$
Rotationskörper Dreieck mit Spitze außen	402	r	h	а		(\$\phi\$)	$V = \frac{1}{6} \cdot h \cdot a \cdot (h + 3 \cdot r) \cdot \frac{\varphi}{\varrho}$ $Hinweis:$ $\varphi = b \text{ bedeutet den Vollkreis}$ $(\varphi = 2 \cdot \pi \cdot \varrho)$
Rotationskörper Dreieck mit Spitze innen	403	r	h		b	$\begin{pmatrix} arphi \\ oldsymbol{b} \end{pmatrix}$	$V = \frac{1}{6} \cdot h \cdot b \cdot (2 \cdot h + 3 \cdot r) \cdot \frac{\varphi}{\varrho}$ $Hinweis:$ $\varphi = b \text{ bedeutet den Vollkreis}$ $(\varphi = 2 \cdot \pi \cdot \varrho)$

		Ein	gabea	nweis	ung		
Geometrische Figur	FO		<u> </u>	Wert			Formel, Berechnung
	FU	1	2	3	4	5	
Rotationskörper Unregelmäßiges n-Eck			for the street of the street o				Die Fläche wird nach Gauß-Elling berechnet. Wird sie im Uhrzeigersinn umfahren, ist sie positiv, ansonsten negativ.
Fall 1: Rotationsachse parallel y-Achse (x _A gegeben) The second of t	404	n	[x _A] x ₁ x _n	[y _A] y₁ y₁ yn		(b)	$\begin{cases} n & \text{Folgedatens\"atze} \\ n & = \text{Anzahl der Punkte} \\ \text{des geschlossenen Polygons} \end{cases}$ $\begin{aligned} & \textbf{Hilfswerte:} \\ & X_{n+1} & = X_1 \\ & Y_{n+1} & = Y_1 \\ & A & = \frac{1}{2} \cdot \sum\limits_{j=1}^{n} \left(X_{j+1} - X_j \right) \cdot \left(y_j + y_{j+1} \right) \end{cases}$ $V & = A \cdot X_R \cdot \frac{\varphi}{\varrho}$ $X_R & = X_A - \frac{1}{6 \cdot A} \cdot \sum\limits_{j=1}^{n} \left(X_j^2 + X_j \cdot X_{j+1} + X_{j+1}^2 \right) \cdot \left(y_j - y_{j+1} \right)$
Fall 2: Rotationsachse parallel x-Achse (y _A gegeben) P2 P3 P4 P4 P5							$V = A \cdot y_R \cdot \frac{\varphi}{\varrho}$ $y_R = y_A - \frac{1}{6 \cdot A} \cdot \sum_{j=1}^n (y_j^2 + y_j \cdot y_{j+1} + y_{j+1}^2) \cdot (x_{j+1} - x_j)$ $Hinweise:$ $\varphi = \emptyset \text{ bedeutet den Vollkreis}$ $(\varphi = 2 \cdot \pi \cdot \varrho)$ $x_A \text{ bzw. } y_A \text{ sind als vorzeichenbehaftete}$ Koordinaten aufzufassen

FO						Formal Danasharina
	1	2	Wert 3	4	5	Formel, Berechnung
405	r _m	r			(B)	$V = r_{m} \cdot r^{2} \cdot \frac{\varphi}{\varrho} \cdot \pi$
						Hinweis: $\varphi = \text{16} \text{ bedeutet den Vollkreis}$ $(\varphi = 2 \cdot \pi \cdot \varrho)$
	405	405 r _m	405 r _m r	405 r _m r		

		Eing		nweisı	ıng		
Geometrische Figur	FO			Wert			Formel, Berechnung
		1	2	3	4	5	
Kugel	411		r			*	$V = \frac{4}{3} \cdot r^3 \cdot \pi$
×							·
Kugelausschnitt	412	[±H]	r	[r ₁]		*	$V = \frac{2}{3} \cdot H \cdot r^2 \cdot \pi$ Wind a engagebon, gift:
H Tr							Wird r angegeben, gilt: $H = r - \sqrt{r^2 - r_1^2}$
Kugelschicht H L T H T T T T T T T T T T T	413	[±H]	[r]	r ₁	r ₂	*	$V = \frac{1}{6} \cdot H \cdot \pi \cdot (3 \cdot r_1^2 + 3 \cdot r_2^2 + H^2)$ Wird r angegeben, gilt: $H = \sqrt{2 r^2 - r_1^2 - r_2^2 + 2 \sqrt{r^4 + r_1^2 r_2^2 - r^2 r_1^2 - r^2 r_2^2}}$

<u> </u>		Eing		nweis	ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
Ellipsoid	421	1	2 ±a	3 ±b	4 ± c	5 *	$V = \frac{4}{3} \cdot a \cdot b \cdot c \cdot \pi$
a +x							
Paraboloid	431	±Η	r			*	$V = \frac{1}{2} \cdot H \cdot r^2 \cdot \pi$
+ X + X + X							

		Eing	gabea		ung		1
Geometrische Figur	FO			Wert			Formel, Berechnung
		1	2	3	4	5	
Parabolisches Faß	432	±Η	D ₁	D ₂		*	$V = \frac{1}{15} \cdot H \cdot \pi \cdot (2 \cdot D_1^2 + D_1 \cdot D_2 + \frac{3}{4} \cdot D_2^2)$
H D ₂ +x							

		Eing	gabea	nweis	ung		
Geometrische Figur	FO	4 1		Wert	1	5	Formel, Berechnung
Rechteck Umfang	500	1	2 a	b	4	*	L = 2 · (a + b)
Prismenmantel	501	±Η	а	b		*	M = H · L L siehe Formel 500
·							

		Eing	abea	nweis	ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
	' '	1	2	3	4	5	
Trapez Umfang	502		а	С	h	*	$L = a + c + 2 \cdot \sqrt{h^2 + \left(\frac{a - c}{2}\right)^2}$
Prismenmantel	503	±Η	а	С	h	*	M = H·L
H							L siehe Formel 502
Allgemeiner Prismenmantel	511	±Η	a ₁	(a ₂)	(a ₃)	(a ₄)	M = H · (a ₁ + a ₂ + a ₃ + a ₄) Hinweis: Es sind nur so viele a-Werte einzugeben, wie Flächen vorhanden sind.
Summe von Strecken P ₁ P ₂ P ₂ P _{n-1} P _{n-1} P _x +x	520	n	x ₁	y ₁		*	$L = \sum_{i=1}^{n-1} \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2}$ $\begin{cases} n & \text{Folgedatensätze} \\ n & = \text{Anzahl der Punkte} \end{cases}$

		Einç	gabea	nweis	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Kreisbogen Bogenlänge	530		$\left(egin{array}{c} arphi \ eta \end{array} ight)$	±r			$L = \frac{\mathbf{r} \cdot \boldsymbol{\varphi}}{\varrho}$ Hinweis: $\boldsymbol{\varphi} = \emptyset \text{ bedeutet Kreisumfang}$ $(\boldsymbol{\varphi} = 2 \cdot \boldsymbol{\pi} \cdot \varrho)$
Kreisbogenmantel	531	±Η	$\left(egin{array}{c} arphi \\ egin{array}{c} arphi \end{array} ight)$	±r		*	M = H · L L siehe Formel 530
Kegelmantel	532	±Η	(°p)	r		*	$M = L \cdot \frac{1}{2} \cdot \sqrt{H^2 + r^2}$ L siehe Formel 530
Kegelstumpfmantel	533	±H	(Sp)	r	r ₂	*	$M = \frac{1}{2} \cdot (r + r_2) \cdot \frac{\varphi}{\varrho} \cdot \sqrt{H^2 + (r - r_2)^2}$ Hinweis: $\varphi = 16 \text{ bedeutet den Vollkreis}$ $(\varphi = 2 \cdot \pi \cdot \varrho)$

-		Eing	jabeai	nweisı	ıng		
Geometrische Figur	FO			Wert]	Formel, Berechnung
		_1	2	3	4	5	2
Zylinderhufmantel	536	±Η	$\begin{pmatrix} \boldsymbol{arphi} \\ \mathbf{b} \end{pmatrix}$	±r		*	$M = H \cdot r \cdot \frac{2}{1 + \cos \beta} \cdot [\cos \beta \cdot (\pi - \beta) + \sin \beta]$
H ×						-	Hilfswert: $\beta = \pi - \frac{\varphi}{2 \cdot \varrho}$ Hinweis: $\varphi = \emptyset \text{ gilt für Zylinderhuf mit Kreis als Grundfläche}$ $M = H \cdot r \cdot \pi$

		Eing	abea	nweis	ung		
Geometrische Figur			Formel, Berechnung				
	. •	1	2	3	4	5	
Ellipse Umfang	550		a	b		*	L = $(a + b) \cdot \pi \cdot (1 + \frac{Z^2}{4} + \frac{Z^4}{64} + \frac{Z^6}{256} + \frac{Z^8}{655})$ Hilfswert: Z = $\frac{a - b}{a + b}$
Mantel	551	±H	а	b		*	M = H·L L siehe Formel 550

		Eing	abeai	nweisi	ung		
Geometrische Figur	FO			Wert			Formel, Berechnung
	. 0	1	2	3	4	5	
Quadratische Parabel Bogenlänge	560		a	b		*	$L = \frac{1}{2} \cdot \left[\sqrt{16 a^2 + b^2} + \frac{b^2}{4 \cdot a} \cdot \ln \left(\frac{b}{2} + \sqrt{\frac{b^4}{64 \cdot a^2} + \frac{b^2}{4}} \right) - \frac{b^2}{4 \cdot a} \cdot \ln \left(\frac{b^2}{8 \cdot a} \right) \right]$
Bogenmantel	561	±H	а	b		*	M = H·L L siehe Formel 560

		Eing		nweis	ung		
Geometrische Figur	FO	1	2	Wert 3	4	5	Formel, Berechnung
Kugel Oberfläche	571		r	0	7	*	$M = 4 \cdot r^2 \cdot \pi$
Kugelschichtmantel	572	±Η	[r]	[r,]	[r ₂]	*	$M = 2 \cdot H \cdot r \cdot \pi$ Hinweis: Es müssen entweder die Parameter H und r oder H, r ₁ und r ₂ eingegeben werden. Werden r ₁ und r ₂ angegeben, gilt: $r = \sqrt[]{r_1^2 + \left(\frac{r_1^2 - r_2^2 - H^2}{2 \cdot H}\right)^2}$

	T	Eing	gabea	nweis	ung		
Geometrische Figur	F0		<i>.</i>	Wert			Formel, Berechnung
	FO	1	2	3	4	5	
Schraube Länge	580	Н	r	n	φ	*	$L = \sqrt{\left(\frac{H}{2 \cdot \pi}\right)^2 + r^2} \cdot \left(2 \cdot \pi \cdot n + \frac{\varphi}{\varrho}\right)$
H							 H = Ganghöhe n = Anzahl der vollen Schraubengänge φ = Winkel jenes Teiles, der über die n-fache Ganghöhe hinausgeht, gemessen in der Grundrißfigur
$0 \leqslant \varphi < 2 \cdot \pi \cdot \varrho$							
Fläche	581	Н	r	n	φ	*	$A = \frac{1}{2} \cdot \left[r \cdot \sqrt{\left(\frac{H}{2 \cdot \pi}\right)^2 + r^2} + \frac{1}{2 \cdot \pi} \right]$
H							$+ \left(\frac{H}{2 \cdot \pi}\right)^{2} \cdot \ln \left(\frac{r + \sqrt{\left(\frac{H}{2 \cdot \pi}\right)^{2} + r^{2}}}{\frac{H}{2 \cdot \pi}}\right)\right] \cdot \left(2 \cdot \pi \cdot n + \frac{\varphi}{\varrho}\right)$